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4.1  Introduction 

As mentioned in chapter three, a new approach for diagnosing seven 

faults and normal status using the developed structure of ANN has been 

proposed. This chapter presents the four useful features (V-load, I-Load, 

Irradiance, and Temperature) (VIIT), considered in the proposed ANN, in 

detail. Also, the simulation results, which are collected from 

implementing the proposed ANN in both phases of training and testing, 

are mentioned in more detail in this chapter in addition to the evaluation 

scenario, which is followed to evaluate the performance of the proposed 

ANN, including all the evaluation metrics used. 

4.2  Effective Features 

The proposed PV model, discussed in Chapter Three, section 3.3 

and mentioned in Figure (3.3), is designed using MATLAB/SIMULINK 

environment. This model is implemented eight times according to the 

healthy state, and seven types of PV faults are considered. At each time of 

implementation, three different irradiance values (500, 750, and 1000) and 

five different temperature values (15, 20, 25, 30, and 35) are considered. 

The V-load and I-load values are reordered in three different time events 

within the SIMILINK running. Thus, the total number of samples done 

each time is 45. Thus, the overall samples of all implementations include 

360 samples. These samples are divided into two groups. The first group 

includes 70% of samples used in the training phase of ANN, while the 

second group includes 30%, which is used in the testing phase of ANN. 

The distributing scenario of samples is performed because the three 

records in each implementation with the same irradiance and temperature 
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conditions are divided into two groups; two records in the first group and 

the other in the second. Thus, the first group includes 240 samples with 30 

samples for each type of PV fault, and the second group includes 120 

samples with 15 samples for each type of PV fault. The values of VIIT 

useful features differ from one implementation to another because the type 

of fault affecting the PV model differs. 

The recorded samples of VIIT in the proposed PV model in a 

healthy state for the three irradiance conditions (500, 750, and 1000 

W/m2) are plotted as the I-V curves in Figure (4.1, a, b, and c), 

respectively. The average I-load values are relatively high (10.2195A, 

11.31623A, and 11.90527A) for all considered irradiance conditions. 

Thus, the generated power from the PV reaches the maximum limit 

because all branches and connections inside the PV module normally work 

without any losses.  

The behavior of the average I-load values in the plotted in I-V 

curves mentioned in Figure (4.2) are repeated again in the PV model under 

the bad contact fault. The recorded values of I-load in all three considered 

irradiances are high (11.11989A, 12.92435A, and 13.60815A), 

respectively. Thus, the generated power from PV is slightly degraded 

according the growing in recorded current caused by the bad contact in the 

electrical connections within the internal connections of the PV module. 

In the line-to-line fault condition, the average I-load values in the 

plotted I-V curves are mentioned in Figure (4.3) takes different behavior 

through slightly difference in current values in three considered irradiance 

conditions (10.20009A, 11.31623A, and 11.90527A). Thus, the generated 

power from PV fails to reflect the increasing in irradiance factor falls on 

the PV cells within the PV module. 
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For the short circuit fault condition in the PV module, three 

scenarios are considered for this fault condition, with different 

percentages of short circuits (25%, 50%, and 75%) verified in the PV 

module. The average I-load values for the plotted I-V curves in the 

proposed PV model under these three percentages of short circuit fault 

conditions are mentioned in Figure (4.4), Figure (4.5), and Figure (4.6), 

respectively. In this type of fault condition, the degradation in the 

generated power becomes more permanent, especially when the 

percentage of short circuits is increased. As a result, the average values of 

I-load in these three considered irradiances are (10.10377A, 11.30679A, 

11.88195A), (7.431213A, 7.908687A, 8.275147A), and (3.923107A, 

4.126613A, 4.30142A), respectively. Continuously, the generated power 

is reduced to (80%) from the healthy case in the first case of (25%) and 

goes down to (11%) in the third case of (75%) short circuit. This hard 

effect comes from the nature of the short circuit fault, which affects the 

overall electrical connection in the PV module because big parts of the 

cells inside the PV module are out of work.    

For the Shadow fault condition in the PV module. The average I-

load values for the plotted I-V curves in the proposed PV are mentioned 

in Figure (4.7). The recorded average values of the I-load in three 

considered irradiance conditions are (10.37266A, 12.92647A, 

13.75915A), respectively. Thus, the generated power from PV equals is 

more than (92%) of the power in the healthy case. This small effect from 

that type of fault partially affects the PV's physical working by locking 

part of the sun's rays from falling on the face of the cell. 

Finally, For the Open circuit fault condition in the PV module. The 

average I-load values in the plotted in I-V curves are mentioned in Figure 

(4.8). The recorded average values of the I-load in three considered 
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irradiance conditions are (10.34714A, 11.94345A, and 13.03869A), 

respectively. Thus, the generated power from the PV module is more than 

(82%) of the power in the healthy case. The shadow that falls on the solar 

panel has a significant impact on its productivity, depending on the extent 

of the shadow that is present on it.  

 

(a) 

(b) 
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Figure (4.1):  Measured I-Vcurves of the Proposed PV Model using a Healthy State 

condition with three different loads, five temperature degrees, and three irradiance 

levels: (a) 500 W/m2, (b) 750 W/m2, and (c) 1000 W/m2. 

 

 

 
(a) 

(c) 
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Figure (4.2):  Measured I-Vcurves of the Proposed PV Model using a Bad Contact 

Fault condition with three different loads, five temperature degrees, and three 

irradiance levels: (a) 500 W/m2, (b) 750 W/m2, and (c) 1000 W/m2. 
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Figure (4.3):  Measured I-Vcurves of the Proposed PV Model using Line to Line Fault 

condition with three different loads, five temperature degrees, and three irradiance 

levels: (a) 500 W/m2, (b) 750 W/m2, and (c) 1000 W/m2. 

 

 

 

 

 

(a) 

(c) 



59 

 

 

 

 

 

Figure (4.4):  Measured I-Vcurves of the Proposed PV Model using a 25% Short 

Circuit Fault condition with three different loads, five temperature degrees, and three 

irradiance levels: (a) 500 W/m2, (b) 750 W/m2, and (c) 1000 W/m2. 

 

(b) 

(c) 
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Figure (4.5):  Measured I-Vcurves of the Proposed PV Model using a 50% Short 

Circuit Fault condition with three different loads, five temperature degrees, and three 

irradiance levels: (a) 500 W/m2, (b) 750 W/m2, and (c) 1000 W/m2. 

 

 

 

 

(a) 

(c) 
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Figure (4.6):  Measured I-Vcurves of the Proposed PV Model using a 75% Short 

Circuit Fault condition with three different loads, five temperature degrees, and three 

irradiance levels: (a) 500 W/m2, (b) 750 W/m2, and (c) 1000 W/m2. 

(b) 

(c) 
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Figure (4.7):  Measured I-Vcurves of the Proposed PV Model using a Shadow Fault 

condition with three different loads, five temperature degrees, and three irradiance 

levels: (a) 500 W/m2, (b) 750 W/m2, and (c) 1000 W/m2. 

 

 

 

 

 

(a) 

(c) 
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Figure (4.8):  Measured I-Vcurves of the Proposed PV Model using Open Circuit Fault 

condition with three different loads, five temperature degrees, and three irradiance 

levels: (a) 500 W/m2, (b) 750 W/m2, and (c) 1000 W/m2. 

 

(b) 

(c) 
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4.3  Implementation of the Proposed ANN 

The structure of the proposed ANN for diagnosing faults in the PV 

module is mentioned in Figure 3.4. This structure has four input neurons 

according to the VIIT useful features and eight output neurons according 

to the seven considered types of faults in addition to the healthy state. 

Also, there are several hidden layers between the input and output layers. 

These layers are inserted originally to expand the computation issue within 

the ANN to increase the accuracy of the final decision. Thus, the proposed 

ANN is implemented three times with three different numbers of neurons 

in the one hidden layer (25, 30, and 40) in each implementation.  

4.3.1 Training Phase of the Proposed ANN 

The training properties considered in the proposed ANN's training 

phase are the same in the three implementations. These properties are 

summarized in Table (4.1).  
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Table 4.1: Main Properties of the Proposed ANN 

# Title Description/Value 

1 Neural Network Type Feed-forward neural network 

2 Training Algorithm Name 
Levenberg-Marquardt 

backpropagation 

3 Maximum number of epochs to train 33000 

4 Performance goal 1e-6 

5 Maximum validation failures. 5000 

6 Initial mu 1.00 

7 Minimum performance gradient 1e-6 

 

 

When the training process of the ANN is finished, the trained 

network must be evaluated to validate the performance of this network. In 

the MATLAB environment, four plotting diagrams are obtained 

automatically and describe the behaviour of this network during the 

training process. These diagrams are discussed separately in the following 

sections.  

4.3.2 The Performance Diagram 

 

As mentioned in Table 4.1, the maximum number of epochs 

considered in the training phase is 33000. The performance diagrams for 
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the three implementations mentioned in the previous section are shown in 

Figure (4.1.a, b, and c), respectively. In each diagram, the green line 

represents the validated fault, while the red line represents the test fault. 

The behavior of red and green curve. In Figure (4.1.a), the two curves go 

similarly, and there is convergence between them even at the minimum 

error point marked with a black circle and a vertical dashed line. While 

the same two curves in Figure (4.1, b, and c) go contiguous each other 

when the epochs counting of training is increased. 

On the other hand, the blue line in these diagrams represents the 

flow of the training process. The behavior of this line in Figure (4.1.b and 

c) goes to the steady state value along with all the time spent for training. 

At the same time, there are the blue line reaching the state of stability in 

Figure (4.1.a).  

The previous discussion about the three performance diagrams 

proves the quality of the  first and second implementations according to 

the matching between the validated and tested line and the long period of 

steady state value for the training process.       
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Figure 4.1: Performance Plotting Diagram of the Proposed ANN with; (a) 25, (b) 30, 

(c) 40 Neurons in the Hidden Layers. 

(c) 

(b) 

(c) 
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4.3.3 Confusion Matrix Diagram  

 

This section presents another evaluation diagram (the confusion 

matrix diagram) for the three considered implementations. This diagram 

acquires exceptional importance compared to the other evaluation 

diagram based on the fact that all the standard evaluation parameters, true 

positive (TP), true negative (TN), false positive (FP), and false negative 

(FN), are obtained in this diagram. The diagonal part in this matrix marked 

green contains the true positive elements with the correct fault 

classification value. In other words, this part handles the elements that the 

predicted and resulted faults are the same. Also, the diagonal cell in the 

lower right corner marked with blue contains the overall accuracy for all 

classification categories. The confusion matrix diagram for the three 

considered implementations is mentioned in Figure (4.2.a, b, and c), 

respectively 
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Figure 4.2: The Resulted Confusion Matrix Diagram of Three Implementations of 

the Proposed ANN in the training phase with; (a) 25, (b) 30, (c) 40 Neurons in the 

Hidden Layers. 

(b) 

(c) 
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The confusion matrix diagrams mentioned in Figure (4.2) result 

from the training phase of the proposed ANN, which handles 30 samples 

for each type of considered fault. The simulation results in Figure (4.2.a) 

for the ANN with 25 hidden layers get the maximum percentage of overall 

accuracy equal to (98.3%) compared to the other two matrix diagrams in 

Figure (4.2.b and c) with (95.0% and 95.8%), respectively. In order to 

calculate the accuracy and error we can use the following equation below: 

Accuracy = PT+PN / PT+PN+FP+FN 

Error = FP+FN / TP+TN+FP+FN 

or 

Error = 1 - Accuracy 

 

The confusion matrix diagram is continuously determined again for 

the proposed ANN in the testing phase, which handles 15 samples for each 

type of considered fault. The confusion matrix diagrams, determined from 

the three implantations of the proposed ANN in the testing phase, are 

mentioned in Figure (4.3.a, b, and c), respectively. Tables 4.2, 4.3, and 4.4 

show in the training phase the specific accuracy of each type of fault 

diagnosis. We note from the tables that the accuracy in fault diagnosis 

decreases as the number of hidden layers increases, and the reason for this 

is because the more hidden layers increase, the complexity of the artificial 

neural network increases, and the smart system proves the accuracy of 25 

hidden layers. The error rate increases as the number of hidden layers 

increases 
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Table (4.2):  The simulation results of the training phase with 25 

hidden layers 

Fault Name No. of 

Training 

Samples 

Predicated Faults by Proposed ANN 

Accuracy % Correct fault Wrong 

Faults 

Details of 

wrong faults 

Healthy PV (FF1) 

30 

30 0 
 

100% 

Bad Contact (FF2) 29 1 
1 FF1 

96.7% 

L-L fault (FF3) 27 3 
3 FF1 

90% 

25% short (FF4) 30 0 
 

100% 

50%short (FF5) 30 0 
 

100% 

75%short (FF6) 30 0 
 

100% 

Shadow (FF7) 30 0 
 

100% 

Open circuit (FF8) 30 0 
 

100% 

Average Accuracy 98.3% 

 

𝑅𝑀𝑆𝐸 = √
(3 + 1)2

240
= 0.258 
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Table (4.9): The simulation results of the training phase with 30 

hidden layers 

Fault Name No. of 

Training 

Samples 

Predicated Faults by Proposed ANN 

Accuracy % Correct fault Wrong  

Faults 

Details of 

wrong faults 

Healthy PV (FF1) 

30 

30 0 
 

100% 

Bad Contact (FF2) 27 3 
3 FF1 

90% 

L-L fault (FF3) 26 4 
4 FF1 

86.7% 

25% short (FF4) 27 3 
3 FF1 

90% 

50%short (FF5) 30 0 
 

100% 

75%short (FF6) 30 0 
 

100% 

Shadow (FF7) 28 2 
2 FF1 

93.3% 

Open circuit (FF8) 30 0 
 

100% 

Average Accuracy 95% 

 

 

𝑅𝑀𝑆𝐸 = √
(3 + 4 + 3 + 2)2

240
= 0.775 
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Table (4.4): The simulation results of the training phase with 40 

hidden layers 

Fault Name No. of 

Training 

Samples 

Predicated Faults by Proposed ANN 

Accuracy % Correct fault Wrong 

Faults 

Details of 

wrong faults 

Healthy PV (FF1) 

30 

30 0 
 

100% 

Bad Contact (FF2) 29 1 
1 FF1 

96.7% 

L-L fault (FF3) 27 3 
3 FF1 

90% 

25% short (FF4) 29 1 
1 FF1 

96.7% 

50%short (FF5) 30 0 
 

100% 

75%short (FF6) 30 0 
 

100% 

Shadow (FF7) 25 5 
5 FF1 

83.3% 

Open circuit (FF8) 30 0 
 

100% 

Average Accuracy 95.8% 

 

 

𝑅𝑀𝑆𝐸 = √
(1 + 3 + 1 + 5)2

240
= 0.646 
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Figure 4.3: The Resulted Confusion Matrix Diagram of Three Implementation of the 

Proposed ANN in the testing phase with; (a) 25, (b) 30, (c) 40 Neurons in the Hidden 

Layers. 

 

The same scenario in the training phase is repeated in the testing 

phase. The simulation results in three confusion matrix diagrams view that 

the best overall accuracy is recorded in the first implementation of the 

proposed ANN with 25 hidden layers. The maximum overall accuracy is 

(98.3%), while the second implementation with 30 hidden layers is 

(97.5%) and (95.8%) for the third implantation with 40 hidden layers. 

Tables 4.2, 4.3, and 4.4 show in the testing phase the specific accuracy of 

each type of fault diagnosis. We note from the tables that the accuracy in 

fault diagnosis decreases as the number of hidden layers increases, and the 

reason for this is because the more hidden layers increase, the complexity 

of the artificial neural network increases, and the smart system proves the 

(c) 
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accuracy of 25 hidden layers. The error rate increases as the number of 

hidden layers increases . 

Table (4.5): The simulation results of the testing phase with 25 

hidden layers 

Fault Name No. of 

Testing 

Samples 

Predicated Faults by Proposed ANN 

Accuracy % Correct fault Wrong 

Faults 

Details of 

wrong faults 

Healthy PV (FF1) 

15 

14 1 
1 Fault FF4 

93.3% 

Bad Contact (FF2) 15 0  100% 

L-L fault (FF3) 15 0  100% 

25% short (FF4) 15 0  100% 

50%short (FF5) 15 0  100% 

75%short (FF6) 15 0  100% 

Shadow (FF7) 14 1 
1 Fault FF3 

93.3% 

Open circuit (FF8) 15 0 
 

100% 

Average Accuracy 98.3% 

 

𝑅𝑀𝑆𝐸 = √
(1 + 1)2

120
= 0.1826 
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Table (4.6): The simulation results of the testing phase with 30 

hidden layers 

Fault Name No. of 

Testing 

Samples 

Predicated Faults by Proposed ANN 

Accuracy % Correct fault Wrong 

Faults 

Details of 

wrong faults 

Healthy PV (FF1) 

15 

14 1 
1 Fault FF4 

93.3% 

Bad Contact (FF2) 15 0  100% 

L-L fault (FF3) 14 1 1 Fault FF6 93.3% 

25% short (FF4) 15 0  100% 

50%short (FF5) 15 0  100% 

75%short (FF6) 15 0  100% 

Shadow (FF7) 14 1 
1 Fault FF3 

93.3% 

Open circuit (FF8) 15 0 
 

100% 

Average Accuracy 97.5% 

 

𝑅𝑀𝑆𝐸 = √
(1 + 1 + 1)2

120
= 0.274 
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Table (4.7): The simulation results of the testing phase with 40 

hidden layers 

Fault Name No. of 

Testing 

Samples 

Predicated Faults by Proposed ANN 

Accuracy % Correct fault Wrong 

Faults 

Details of 

wrong faults 

Healthy PV (FF1) 

15 

14 1 
1 Fault FF4 

93.3% 

Bad Contact (FF2) 14 1 1 Fault FF6 93.3% 

L-L fault (FF3) 14 1 1 Fault FF6 93.3% 

25% short (FF4) 14 1 1 Fault FF6 93.3% 

50%short (FF5) 15 0  100% 

75%short (FF6) 15 0  100% 

Shadow (FF7) 14 1 
1 Fault FF8 

93.3% 

Open circuit (FF8) 15 0 
 

100% 

Average Accuracy 95.8% 

 

𝑅𝑀𝑆𝐸 = √
(1 + 1 + 1 + 1 + 1)2

120
= 0.456 

 

4.3.4 The Error Histogram Diagram  

 

This section presents another evaluating diagram called the error 

histogram diagram. This diagram takes the greatest importance in the 

evaluation process based on the fact that this diagram views the 

determined error between the resulted and predicated outputs. The 

histogram error diagram for the three implementations of the proposed 

ANN is mentioned in Figure (4.4.a, b, and c), respectively.  
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Figure 4.4: The Error Histogram Diagram of Three Implementation of the Proposed 

ANN in the training phase with; (a) 25, (b) 30, (c) 40 Neurons in the Hidden Layers. 

 

 

The simulation results in these figures view that the most 

determined errors of tested, validated, and trained data in the three 

diagrams go nearest the zero-error vertical line marked with orange. This 

matching of more than 95% of components with zero value indicates the 

robustness of the proposed approach to generate important accuracy.      

4.4  Comparison of the Proposed Approach 

In this section, the simulation results, which are determined from 

the three implementations of the proposed ANN, are compared with the 

corresponding results from some well-known existing works of detecting 

different PV faults in the literature using ANN. The smart detecting 

technique of the PV faults, the number of faults, and the overall resulted 

in accuracy for the three existing works, in addition to the proposed 

approach, are illustrated in Table (4.8). The existing works for validation 

(c) 
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are selected with the same classification technique ANN but with different 

types and numbers of PV faults.    

The compared results are that the proposed approach scores overall 

accuracy equal to (98.3%) which is semi-equal to the maximum overall 

accuracy of one technique (98.2%) using the same smart technique for 

implementation. Applied to detect normal and four PV faults only 

compared to the proposed PV FDD approach, which successfully detected 

normal and seven PV faults, including all main types. Also, a short circuit 

fault is implemented with three different conditions. While the other 

existing work in the compared table successfully detected normal and nine 

PV faults, some main types of PV faults (line to line, bad contact, and open 

circuit) were not considered in the detected PV faults. Also, the recorded 

classification accuracy was less than one for the proposed FDD approach.  

Finally, the study demonstrates that the Fuzzy Logic Controller 

successfully detects specified faults with consistently high accuracy 

(98.3% to 99.1%). However, to fully assess its reliability and performance, 

considerations like sample size, false positives/negatives, external factors, 

and comparison with other techniques are essential. 
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Table (4.8): Validation Results of Three Existing Techniques of PV Faults 

Detection and the Proposed Approach 

 

# Technique Name Year Description of Faults detected  Overall 

recorded 

Accuracy 

1 ANN using (MLP) 

[9] 

2020 1) Normal  

2) Shading 50% of single cell  

3) Shading 100% of single cell  

4) Shading of a cell of the group 

2-50% 

5) Shading of a cell of the group 

2-100% 

6) Increase the resistance series 

7) Shorted cell 

8) Shading if six cells 

9) Bypass diode reversed  

10) defective bypass diode 

 

97.2% 

2 artificial intelligent 

nonlinear 

autoregressive 

exogenous neural 

network and 

Sugeno fuzzy 

inference [18] 

2020 1) Normal  

2) Open circuit degradation 

3) Short circuit degradation 

4) faulty MPPT 

5) Partial shading conditions 

98.2% 

3 Fuzzy Logic 

controller  [17] 

2019 1) Short Circuit Fault 

2) Open Circuit Fault 

3) Partial Shading  

Bird or tree leaves dropping 

99.1% 

98.3% 

99.1% 

98.3% 

4 The Proposed 

Approach of PV 

FDD Using ANN 

 1) Normal  

2) Line to Line 

3) Open Circuit 

4) Bad Contact 

5) Shadow 

6) Short Circuit 25% 

7) Short Circuit 50% 

8) Short Circuit 75%   

 

98.3% in the 

testing and 

training 

phases  


